Talented and highly respected US theorist Robert Serber died on 1 June. As one of the early collaborators of J. Robert Oppenheimer in California, with whom he developed important astrophysics and cosmic ray ideas, he was a first generation US theorist. In the 1930s, he was one of the pioneers of 'renormalization' techniques to make field theory tractable. His name also became enshrined in the annals of machine physics when in 1941, at Illinois, he developed with Donald Kerst the orbit theory of betatrons, opening the way to the successful operation of such a machine. Before moving to the war effort, he developed with his student Sidney Dancoff what would become standard work in meson theory. Moving from Illinois to Berkeley after the war, he introduced the fruitful concept of the optical model to describe collision processes, and carried out seminal work on deuteron stripping. In the early 50s, Serber migrated from Berkeley to Columbia. In addition to pursuing his own ideas, sometimes difficult and offbeat, he was a prolific source of inspiration to his colleagues. Murray Gell-Mann's historic 1964 quark paper credits Serber for having stimulated the idea when Gell-Mann visited Columbia in 1963. Serber was also a major influence for the physics of kaon interactions. Credits and acknowledgements to him abound in the literature. In 1971 he was elected President of the American Physical Society, and, appropriately, as longtime Oppenheimer collaborator, was awarded the Oppenheimer Prize in 1972 for his contributions to theoretical physics.

In his fascinating 1994 reminiscences published in Annual Review of Nuclear and Particle Physics, he recalls his teaching experience: 'I dreamt I died and went to heaven, and Saint Peter led me into the presence of God. And God said "You won't remember me, but I took your Quantum Mechanics Course in Berkeley in 1947".'