Emilio Segré died on 22 April. As one of Enrico Fermi’s earliest collaborators in the 1930s, he looked at the effects of neutron bombardment. In 1937, he discovered the missing element 43, subsequently named technetium, in a sample of irradiated molybdenum brought back from Berkeley. Evicted from his Palermo position, he took up residence in the US, going on collaborate in the epic Berkeley work on the synthesis of transuranic elements before moving to the Manhattan Project.

In peacetime, new particle accelerators wrested the experimental initiative from cosmic ray studies. In 1954, the new Berkeley Bevatron became the world’s highest energy machine. The early 1930s had seen the discovery of the positron, antimatter counterpart of the electron. Dirac had also hinted that the proton too should have its antiparticle, and the Bevatron’s energy of 6.2 GeV promised that if the antiproton existed, then the machine could make them. Segré, with Owen Chamberlain, found the first examples the following year, their discovery meriting them the 1959 Nobel Physics Prize. After several years in Rome in the mid-70s, Segré returned to Berkeley.